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Accelerator Physics Issues for Run Accelerator Physics Issues for Run IIaIIa

Interesting AP issues, many of which 
have been presented earlier:
– Tevatron:  beam-beam, halo development and 

collimation, orbits & apertures, instabilities, 
lattice, etc.

– Main Injector:  emittance growth, injection 
match, coalescing, transition crossing, etc.

– Antiproton Source:  beam-gas, IBS, lattice,
chromaticities, damping systems, etc.

– Proton Source:  space charge, injection, 
energy deposition, instabilities, etc.

– Recycler: …
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Major IssuesMajor Issues
Luminosity given by:
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Major Issues:  beam-beam interaction, emittance preservation 
(transverse & longitudinal) transfers, beam instabilities, lifetime, 
detector background
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Physics Support for Run Physics Support for Run IIaIIa
Support provided by Beam Physics Department:

Injectors, Recycler –
– Coalescing calculations, instabilities, beam 

transfers, longitudinal dynamics, Booster 
injection magnet, etc.

This talk will concentrate on :

Tevatron --
– Lattice efforts -- helical orbits, aperture, …
– Beam-beam effects – tunes, dynamic aperture
– Longitudinal instabilities
– Energy deposition / backgrounds
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C0 ApertureC0 Aperture

Unnecessary “abort” Lambertsons generate small vertical 
aperture

– helix adjusted (4 sep.’s rather than 2) from its design to 
produce small vertical separation at this location at injection

– Lambertson nonlinearities studied; not an issue for operation 
(B. Erdelyi)

C0 Vertical Aperture
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C0 Aperture (cont’d)C0 Aperture (cont’d)
Options:
– Replace Lambertsons with warm MI dipole 

magnets
– Reconfigure straight section with cryo magnets 

(as in other Tev straight sections)
• Option for moving – but maintaining – synch-light 

monitor has been proposed (J. Johnstone)
– Effects of nonlinearities of MI magnets have been 

analyzed (T. Sen) and are small 
– Gain from increased aperture…

• allows for either
– More room for larger emittance beams
– Room to increase p-pbar separation
– …both
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C0 Aperture (cont’d)C0 Aperture (cont’d)

If C0 vertical aperture restriction is removed, 
then can go back to the original design 
helix, giving smaller variations of beam 
separation around the ring
Can also consider other helix schemes for 
injection
– Consider using more than 2 separators during 

injection with the increased aperture; area of 
present studies

Next aperture issue – A0 …
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C0 Aperture (cont’d) C0 Aperture (cont’d) ---- J.J. JohnstoneJohnstone

Current helix moves C0 
separation to horizontal 
planePlots start at F0

Removing C0 restriction 
allows for larger overall 
separation
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A0 ApertureA0 Aperture
With C0 vertical aperture restriction 
removed, and original design helix restored, 
the closest approach of the two beams (in 
units of beam size) occurs in A0 region –
“high beta” optics used for slow resonant 
extraction
Thus, consider changing A0 optics to the 
original “standard” Collins straight section
Work on-going to investigate C0 and A0 
options; decisions tied to timing of long 
shutdown and  scheduling/manpower issues 
for implementation in the tunnel
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A0 Optics and Helical OrbitA0 Optics and Helical Orbit

Courtesy 
J. Johnstone



MJS/review Oct02

BeamBeam--beam Simulations and Experimentsbeam Simulations and Experiments
Main issues are at injection – separated orbits (helix) 
with 72 long range interactions
Look at:
– Particle tracking calculations of dynamic aperture
– Dynamic aperture vs. tune
– Comparisons of calculations with observations & 

experiments

Proton train
4 pbar bunches
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Injection Dynamic Aperture Calculations (M. Xiao)

Pre/Early-Run studies
15π emittance, dp/p=0.4e-4 (1σ),
νx,y=(0.585,0.575), Original helix

Present Conditions
25π emittance, dp/p=13e-4 (3σ),

νx,y=(0.583,0.575), “new-new” helix
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MultiMulti--particle modeling   particle modeling   ((KabelKabel, , CaiCai; SLAC); SLAC)

106 particles, long-range interactions at 150 GeV, helical orbit…
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980 980 GeVGeV Dynamic Aperture   Dynamic Aperture   (T.(T. SenSen, M., M. XiaoXiao))
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Bare tunes 4D DA 6D DA (δp = 3 × 10−4)
(〈DA〉, DAmin) (〈DA〉, DAmin)

A0 0.585, 0.575 (10.0, 9.0) (7.8, 6.0)
A1 0.575, 0.569 (9.2, 7.0) (5.1, 4.0)
A2 0.577, 0.571 (9.3, 8.0) (7.5, 6.0)
A3 0.579, 0.573 (9.4, 9.0) (8.1, 7.0)
A4 0.583, 0.577 (9.8, 9.0) (7.6, 6.0)
A5 0.585, 0.579 (9.6, 8.0) (7.5, 7.0)
A6 0.587, 0.581 (9.5, 8.0) (7.5, 6.0)
A7 0.575, 0.585 (11.0, 9.0) (8.6, 7.0)
A8 0.577, 0.587 (10.7, 9.0) (8.4, 8.0)
A9 0.579, 0.589 (10.5, 9.0) (7.6, 5.0)
A10 0.581, 0.591 (10.0, 8.0) (7.0, 5.0)
A11 0.583, 0.593 (9.5, 6.0) (4.8, 3.0)
A12 0.585, 0.595 (8.5, 6.0) (1.9, 1.0)
A13 0.551, 0.561 (10.9, 9.0) (7.2, 5.0)
A14 0.553, 0.562 (10.7, 9.0) (6.2, 5.0)
A15 0.555, 0.564 (10.2, 9.0) (7.2, 6.0)
A16 0.556, 0.566 (9.9, 8.0) (5.7, 3.0)
A17 0.558, 0.568 (11.0, 9.0) (5.4, 3.0)
A18 0.560, 0.570 (10.5, 8.0) (5.4, 3.0)

Table 7: Dynamic aperture, both 4D and 6D, calculated after 105 turns at different tunes shown in Figure 18.
All beam-beam interactions were included. A0 is the nominal tune, A1, A2, A17 and A18 are close to 7th order
resonances while A12 is close to 5th order resonances. We observe that at tunes away from these low order
resonances the dynamic aperture does not change significantly.

Tracking results:
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980 980 GeVGeV Dynamic Aperture   Dynamic Aperture   (T.(T. SenSen, M., M. XiaoXiao))

Compare with experimental results…
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•Losses, lifetimes impacted at tunes 
where DA is expected smaller
•Pbar bunch 12 has better lifetime; 
bunch 8 is worse

Emittance exchange observed as 
crossing coupling resonance 
(pbars); not seen for protons
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Lattice investigations …Lattice investigations …
Transverse coupling correction is higher than 
during previous run (N. Gelfand, et al.)
– If main skew quad circuit turned off, ∆νmin ~ 0.4
– Models, using operational currents, do not agree 

with observation (x10!) – unknown source(s) of 
coupling

– Vertical dipole correctors in E-F-A sectors have 
large average offsets

• Around ring, <θy> = 16 µrad; <θx> = 0.7 µrad
• Through portions of E-F-A, <θy> = 80 µrad seen

– Alignment measurements in above regions show 
rolls of 2-8 mrad (worse in dipoles); appears to 
change over time; need for total survey & 
alignment of Tevatron
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Lattice investigations …Lattice investigations …
Transverse Coupling in IR’s     (B. Erdelyi, et al.)
– Was issue in Run I

– rolled triplet quads (~10 mrad!)
– Studies performed on B0 (CDF) region over three 

study periods; still to do: D0 region
– Assume design model in region for computing 

transfer matrices, but rolled triplet magnets 
allowed; influence of detector magnets neglected

– H&V BPM measurements made of responses to 
local orbit distortions through region; 64 orbit 
measurement produced 64x4=256 equations in 3 
variables (for each triplet)

– IR’s have local skew quads; measurements made 
with these magnets both on and off.
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Lattice investigations …Lattice investigations …
Transverse Coupling in IR’s -- results for B0 (CDF)

– Roll angles obtained (nonlinear fitting procedure):

Promising method;  T-B-T BPM system would greatly increase 
resolution of the method

Will continue for D0, perhaps other regions of the Tevataron
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Lattice investigations …Lattice investigations …

Quad,
BPM (=0),vert corr

Rolled dipole,
= vert error

Max vert displacement

Systematic offset in magnets due to rolls and 
corrections:
– Rolled quads – linear coupling
– Rolled dipoles, corrected by vertical steering 

magnets –
• “scalloped” orbit through the dipole magnets
• Generates ~1-2 mm vertical offsets through dipoles

– Therefore, more coupling due to b2 feed-down
– Other nonlinear effects?

• Being investigated further…
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Longitudinal IssuesLongitudinal Issues
Bunch length growth at 150 GeV
Losses during the Ramp
Beam instabilities – dancing bunches
DC beam generation during store

Effects –
– Hour-glass effect:    β(s) = β* + s2/β*

• since σz > β* -- > makes a hit on luminosity
– Dispersion mismatches transverse emittance 

growth during transfers (observed effect)
– Vertical dispersion in Tevatron – effecting 

luminosity?  (probably not; should be small effect)
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HourHour--glass effectglass effect
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Losses through the RampLosses through the Ramp (T.(T. SenSen, F. Schmidt, et al.), F. Schmidt, et al.)

Study performed with 36 proton (only) 
bunches, with different characteristics
Varied -- momentum spread (coalescing),
emittances (scraping), intensities (Booster 
turns) 
Measured over time: intensities, emittances, 
ramp efficiencies, lifetimes at 150 GeV, etc.
Strong correlation of ramp efficiency with 
bunch length --> longitudinal scraping
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Losses through the RampLosses through the Ramp (T.(T. SenSen, F. Schmidt), F. Schmidt)

Main Injector bunch length at 150 GeV 
is ~2.5 nsec; increases by ~1-2 nsec 
upon injection into Tevatron
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R2 = 0.83•Ramping efficiency worse for 
longer bunch lengths

•If could be preserved, would 
give 1.5 nsec (rms) bunches at 
980 GeV, rather than 2.2 nsec 

+16% gain in luminosity 
(hour glass)
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InstabilitiesInstabilities ---- Dancing BunchesDancing Bunches

Long-term coherent synchrotron oscillations of 
proton bunches observed in Tevatron, no damping of 
oscillations, no increase in emittance
Dampers are “cure” for now; will return??   Would 
still like to understand source…

Mountain range plot of
uncoalesced bunches 
dancing in the Tevatron, 
July 2002; here, 3 from 
a train of ~30; courtesy 
R. Moore.
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Dancing bunchesDancing bunches
Charge distribution different for coalesced /
uncoalesced bunches; bunches oscillate at 
differing frequencies
So far, uncoalesced data studied in detail
Purely imaginary inductive impedance due to 
space charge -- a modified Keil-Schnell 
criterion (Balbekov, Ivanov, 1991) -- yields 
|Z/n|thresh that can sustain such an oscillation 
For Tevatron, at 1010/bunch, ~ 1 Ohm 
(numerically in right ball park)
Computer model…



MJS/review Oct02

Dancing bunchesDancing bunches (V. (V. BalbekovBalbekov))

Compute longitudinal density ρ(φ), assuming

Compute corresponding longitudinal electric 
field; gives equation of motion of the form:

( t t/Ts )

For Tevatron, Q = -6 x 10-13 N (i Z/n[Ohm])
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Dancing bunchesDancing bunches (V.(V. BalbekovBalbekov))

Linear approximation separates to give…
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Computer simulation:
5000 particles, Q=-0.1, φ0=0.5

Work continues…
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DC Beam GenerationDC Beam Generation
Develops immediately at injection, causing 
losses when ramp – full buckets at transfer
But, also develops during store
– Mechanisms unknown; Tevatron Electron Lens 

(TEL) used as cure
Collaborative studies with experiments (A.
Tollestrup, CDF, for example) -- sensitive 
measurements of DC beam migrating into 
abort gaps
– Indicates protons being lost from buckets at rate 

of several 106/sec or so
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DC Beam GenerationDC Beam Generation
Phase noise, voltage noise most likely candidates; 
probably more sensitive to phase noise (motion near 
unstable fixed points)
– Random turn-to-turn noise:

dS/dt =  1 eV-sec/hour
∆φrms = 0.4o

• Note:  would also lead to 2π mm-mr/hour transverse emittance 
growth due to dispersion in cavities…

– Possibly transverse modulation & synchro-betatron 
coupling:

• Motion of closed orbit due to varying transverse field 
gives changing path length ( ∆C = D∆θ ), and hence 
varying phase

223 eV
eVhdS φ

ηπ
∆=

2 Ehdt rms
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DC Beam GenerationDC Beam Generation

D 4 m= θmax 5.615 10
6−×= fm 60 Hz= fs 35.638 Hz= gmax 0.752 deg=

Initial conditions: φ0 π− 170− deg= dp
0

0= max φ π−( ) 2.697 10
3× deg=
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Example:  5 µrad steering error (at D=4m) oscillating at 60 Hz 
(synchrotron frequency is 36 hz) can produce 0.5 degree phase 
oscillations of bunch center – particles near separatrix will leak out…

investigation continuing…
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Energy Deposition     Energy Deposition     ((MokhovMokhov, , DrozhdinDrozhdin,, et al.)et al.)

Loss rates in B0 (especially) and D0 an issue
Present system designed for cure of beam losses 
due to slow emittance growth – works well as 
designed; about 0.1% of particles escape system
Large angle elastic scattering off residual gas nuclei 
and Coulomb scattering, between collimators and 
IPs, result in higher loss rates at detectors
Detailed MARS model of A-sector, B0 and CDF 
(including Roman Pots) for beam loss and radiation 
studies -- suggests use of “shadow collimators”
– 0.6 m  “mask” just before last dipoles entering IP
– 13σx and 20σy away from beam
– Reduces backgrounds by about 10 times
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0.6-M MASKS IN BØ and DØ
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Collaborative EffortsCollaborative Efforts
SLAC, LBNL  -- Long-range beam-beam 
simulations, using particle-in-cell 
modeling; SciDAC
UM, LBNL  -- Recycler modeling, using 
MaryLie
CERN, BNL  -- physicist exchange; F. 
Schmidt, W. Fisher, F. Pilat, V. Ptitsyn so 
far; more to come
ANL, IUCF  -- AP groups meeting bi-
monthly; so far, sharing computational / 
experimental experiences on instability 
issues
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BackBack--up Material…up Material…
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Helical orbit separator failureHelical orbit separator failure
Store 1253:  separator (horiz.) at A49 failed:

– Neg. plate went from -90 kV to -25 kV
– Field went from ~3.6 MV/m to ~2.3 MV/m
– ∆θ = +/- 3.4 µrad (opp. sign for p, pbar)
– Observed 40% loss in luminosity, beam lifetimes (esp. 

protons) decreased x1/2
– Emittance growth rates changed:  25 hr 15 hr
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Analysis of Store 1253 Analysis of Store 1253 (T.(T. SenSen))
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~6σ from collimators
•after failure, moved 0.7σ
closer
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Store 1253 (cont’d):Store 1253 (cont’d):
With simple diffusion model, can estimate change in 

lifetime expected with changes in effective aperture 
and emittance growth rate.

The lifetime due to diffusion is given by

where a=aperture @ β(s),λ1 = 1st zero of J1

and so we would expect

The ratio of the observed lifetimes is 100/198 = 0.51
Cause of increase in dε/dt still unknown.
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Lattice investigations …Lattice investigations …
Resonance Driving terms due to present 
magnet configuration             (L. Michelotti)
– In 1980’s – magnets were “shuffled” with b2, b4’s 

and a2,a4’s in mind (sextupole and octupole 
coefficients); lately – only by quench currents

– Procedure minimized driving terms of six 
resonances, ensuring < 1σ effect of what would be 
expected from totally random placement of 
multipoles

– Over 20 years, configuration of magnets in 
Tevatron has degraded this balancing act, but not 
severely.  Ex:  3νx = 58 resonance driving term is 
now about 2.6 times stronger; however, Tevatron 
would have to approach within 0.002 of this 
resonance line to have a serious effect
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TurnTurn--byby--Turn BPM SystemTurn BPM System
Current Tevatron System
– 0.15 mm readback resolution (hardware has 0.01 

resolution or better)
– T-B-T in some BPM’s only; work in progress on ring-

wide system

Applications:
– Diagnostics of system itself -- bad, noisy BPM’s; 

resolution measurements
– Enhanced measurement accuracy via statistical 

reduction of random noise
– Linear lattice verification
– Nonlinear single particle map measurements
– Effective transverse impedance measurement
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Other Support from Other Support from 
Beam Physics Dept. …Beam Physics Dept. …

Booster
– Energy deposition

• Beam loss and radiation studies, collimation system design and installation of primary 
and secondary collimators.

– Injection Lambertson Magnet upgrade
– Space charge calculations / tracking (on hold, but may start 

again soon)
– Transition crossing simulations

BOOSTER L-6 MARS MODEL AND DOSE
Booster L−6 collimator shielding      MARS14
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Other Support from Other Support from 
Beam Physics Dept. …Beam Physics Dept. …

Main Injector  -- Coalescing calculations; instabilities
Recycler  -- Injection, transfers; longitudinal calculations
Run IIb
– Beam-beam 

• 132 nsec operation
– Crossing angles, tune footprints, etc.

• BB ∆ν compensation (electron lens)
– Slip-stacking / barrier bucket
– Electron cooling

Other projects (PD, LC, muons) slowed down (essentially 
stopped), and efforts redirected toward Run II…
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Other Support from Beam Physics Dept. …Other Support from Beam Physics Dept. …

– Computing (1.5 FTE)
• Administer BD unix cluster for accelerator calculations
• Administer BD parallel cluster (32 node, 64 CPU) for general accelerator 

calculations (driven by beam-beam, energy deposition, space charge 
calculations)

– C0/BTeV -- IR design and beam separation schemes; 0.5 FTE, 
slowing down

– LHC -- IR designs and tracking studies; phase I and phase II; 1 FTE
– µ/ν -- 3.5 FTE’s previously assigned to this effort; now ~1 FTE
– Fermilab/NIU Photoinjector Laboratory (0.5 FTE)
– Finished or slowed projects:

• NuMI -- redesign of NuMI beam line optics and MI extraction; energy 
deposition calculations (beam line, MINOS, MI)

• Proton Driver -- design studies I, and II
• LC -- had been 2.5 FTE’s, recent efforts ~0 FTE
• VLHC -- led BD portion of 2001 design study last year; presently 0 FTE
• plus: 

– ICFA meeting, BD/TD seminars,PhD program, …
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Further remarks...Further remarks...
Work continues on much of above; many 
other issues – injectors, Recycler, etc.
Some things to do:
– improve impedance model of the Tevatron – Task 

Force being formed for follow-up
– Continue to improve model of Tevatron lattice, 

including alignment and other errors – Task Force 
working on this; new alignment data needed

– further improvements to beam diagnostic analysis 
using improved Turn-by-Turn BPM system
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